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Problem
How can we make a computer read the value of dice?

Reference: Dice recognition program made by Glen De 
Backer
https://www.simplicity.be/article/recognizing-dices/

https://www.simplicity.be/article/recognizing-dices/


Technical Approach
> Binarize image

> Find connected components

> Filter out unwanted components

> Show results



Technical Approach
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Result
> The value the 
computer calculated 
for one die is displayed

> Location of die pits 
(circles) are plotted



Results from Connected Components



Conclusion
1.) Connected components provides scale invariance

2.) Otsu algorithm is optimal in segmenting background and foreground

3.) Background subtraction and hough circle transform constrains the 
algorithm too much

4.) Expand as a tool for blind people to be able to play boardgames
> Computer voice to read dice value
> Board reading
> Piece placement and score reading
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I. Introduction 

 
Sight is an integral part of human 

interactions. We base many of our 
actions on what we see. Often times, 
people have lose their sight for one 
reason or another. This can have a 
negative impact in everyday life.  

We propose a program to help 
the blind in one aspect of life, board 
games. The program is designed using 
connected components and eccentricity 
thresholding to analyze the dice roll 
value. This can allow them to know the 
roll they get on the board and get them 
more involved. 
  

II. Technical Approach 
 
The algorithm uses an image 

binarization with a threshold decided by 
the Otsu Algorithm. This binarized 
image is then inverted for the dots to 
become the foreground. The open 
morphological method is used to 
remove any stray pixels. 

A connected components 
approach is taken to provide regions of 
interests. The centroid and eccentricity 
are extracted from these regions of 
interests. A “for loop” checks each 

regions eccentricity via threshold and 
records the current centroid and number 
of successfully detected dots.  
 
III. Data Acquisition 

 
Equipment: Several board 

games were utilized for experimentation, 
they include: Risk, Zelda-themed 
Monopoly, Future-themed Monopoly, 
and Clue. A standard six-sided, black 
and white die. A tripod and a Canon 7D 
DSLR with an 18-105mm lens.  

Typically, ¼ to ½ of the total 
game board was roughly used to roll the 
die on. The die would be rolled within 
the area of play and the camera, 
mounted on the tripod would capture the 
event. The camera was set to roughly 
~35mm to minimize barrel distortion, as 
well as to capture the intended ¼ to ½ 
area of play.  

Between 30-33 images were 
captured per game board to be used as 
inputs to our program to determine the 
die roll value.  
 
IV. Results 

 
Fig. 1 in the appendix shows the 

resulting performance of the program 
using the data collected in a confusion 
matrix. From the figure we can see that 
our implementation tends to 
under-detect the correct value of the die 
(number of black circular pits in our 
experiments). We also have have many 
false positives in which the program 
detected a higher value then there 



actually was, usually due to the program 
identifying other circular objects in the 
image. However, more than half of the 
130 data images had a correct value 
detection, which are the values lying on 
the blue diagonal of the confusion 
matrix.  

Based on Fig. 2, we have 
following derived statistics in the table 
below:  

 

Accuracy TOTAL
TP+TN  0.68 68% 

Error Rate TOTAL
FP  + FN  0.338 33.8% 

Sensitivity P
TP  0.75 75% 

Precision TP
TP+FP  0.82 82% 

 
Here we can see a 68% accuracy 

of the program, correctly identifying the 
value of the die roll slightly greater than 
⅔ of the time. The accuracy suffers from 
true negative cases being difficult to 
define. This is something that can be 
improved upon in future revisions.  

The error rate of 33.8% indicates 
that typically our program misidentifies 
the value of the die about a ⅓ of the 
time.  

The sensitivity indicates the 
number of correct positive predictions 
divided by the total number of positives 
(excluding false positives) and the best 
sensitivity is a value of 1.0. We have a 
value of 0.75 indicating we have a good 
level of sensitivity.  

Precision is similar to sensitivity 
but it is divided by the total number of 

positives (both true and false positives). 
Again value of 1.0 is ideal and our 
program has a level of precision at 0.82, 
indicating a high level of precision. 
 
V. Conclusion 

 
1. Connected Components coupled 

with an eccentricity thresholding 
provides scale invariance with 
minimal loss in accuracy.  

2. Otsu algorithm is useful for 
segmenting the foreground and 
background even when the 
ground has some intensity similar 
to the foreground. 

3. These two methods combined 
provide a flexible and fairly 
accurate approach to the 
problem. 

4. Future work for this project would 
be computer voice reading of the 
number rolled. This method could 
be expanded to help the blind 
have more involvement in board 
games. This can include future 
work in reading a players current 
board placement, keeping track 
of their score, and reading the 
board for players to strategize. 
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Appendix 
 
Fig. 1 - Example Output

 
 

Fig. 2a - Original Confusion Matrix 

 
 

Fig. 2b - Simplified Confusion Matrix 
 

 
 
 



SOURCE CODE 
 
clear all; 
close all; 
clc; 
 
for a = 1:32 
    %Used to loop through all files in the specified directory 
    filename = ['C:\Users\josep\Desktop\CV_DATA\z_mono\' num2str(a) '.JPG'];  
    img = imread(filename); 
    TEMP = img; 
    img = rgb2gray(img);    %Grayscaled version of image 
 
    %============== Finding the circles in the Dice =========================== 
    threshold = graythresh(img);                    %Finds optimal threshold for binarization 
    BW = imcomplement(imbinarize(img, threshold));  %Thresholds images and inverts it 
    BW = bwareaopen(BW, 600);                       %Removes small objects from image 
    %Connected components 
    CC = bwconncomp(BW);  
    stats = regionprops('table', CC, 'Centroid', 'Eccentricity', 'MajorAxisLength',‘MinorAxisLength');  
    %Finds the circles of interests 
    c = stats.Centroid; 
    cnt = 0; 
    centers = zeros(length(stats.Centroid), 2); 
    diameters = zeros(length(stats.MajorAxisLength), 1); 
    for i = 1: length(stats.Eccentricity) 
        if (stats.Eccentricity(i,1) <= 0.28) 
            centers(i, 1) = c(i, 1); 
            centers(i, 2) = c(i, 2); 
            diameters(i, 1) = mean([stats.MajorAxisLength(i,1) stats.MinorAxisLength(i,1)],2); 
            cnt = cnt + 1; 
        end 
    end 
    radii = diameters/2;  
    %Overlays some information on image 
    cnt = num2str(cnt); 
    I_ovrlay = insertText(TEMP,[0,0],cnt,'FontSize',200,'BoxColor','red','BoxOpacity',1.0, 
'TextColor', 'white'); 
    figure, imshow(I_ovrlay), title('GAMEBOARD'); 
    hold on 
    viscircles(centers,radii); 
    hold off 
end 


