
Dice Counter
Patrick Schell
Joseph Gozum
EE146 - Computer Vision
March 15th, 2018

Problem
How can we make a computer read the value of dice?

Reference: Dice recognition program made by Glen De
Backer
https://www.simplicity.be/article/recognizing-dices/

https://www.simplicity.be/article/recognizing-dices/

Technical Approach
> Binarize image

> Find connected components

> Filter out unwanted components

> Show results

Technical Approach

Binarize after
thresholding

with Otsu

Find circles
via

Connected
Components

Filter out
circles of

low
circularity

Plot circles
over original

image

Result
> The value the
computer calculated
for one die is displayed

> Location of die pits
(circles) are plotted

Results from Connected Components

Conclusion
1.) Connected components provides scale invariance

2.) Otsu algorithm is optimal in segmenting background and foreground

3.) Background subtraction and hough circle transform constrains the
algorithm too much

4.) Expand as a tool for blind people to be able to play boardgames
> Computer voice to read dice value
> Board reading
> Piece placement and score reading

Dice Counter
University of California, Riverside

EE146 - Computer Vision
Joseph Gozum
Patrick Schell

I. Introduction

Sight is an integral part of human

interactions. We base many of our
actions on what we see. Often times,
people have lose their sight for one
reason or another. This can have a
negative impact in everyday life.

We propose a program to help
the blind in one aspect of life, board
games. The program is designed using
connected components and eccentricity
thresholding to analyze the dice roll
value. This can allow them to know the
roll they get on the board and get them
more involved.

II. Technical Approach

The algorithm uses an image

binarization with a threshold decided by
the Otsu Algorithm. This binarized
image is then inverted for the dots to
become the foreground. The open
morphological method is used to
remove any stray pixels.

A connected components
approach is taken to provide regions of
interests. The centroid and eccentricity
are extracted from these regions of
interests. A “for loop” checks each

regions eccentricity via threshold and
records the current centroid and number
of successfully detected dots.

III. Data Acquisition

Equipment: Several board

games were utilized for experimentation,
they include: Risk, Zelda-themed
Monopoly, Future-themed Monopoly,
and Clue. A standard six-sided, black
and white die. A tripod and a Canon 7D
DSLR with an 18-105mm lens.

Typically, ¼ to ½ of the total
game board was roughly used to roll the
die on. The die would be rolled within
the area of play and the camera,
mounted on the tripod would capture the
event. The camera was set to roughly
~35mm to minimize barrel distortion, as
well as to capture the intended ¼ to ½
area of play.

Between 30-33 images were
captured per game board to be used as
inputs to our program to determine the
die roll value.

IV. Results

Fig. 1 in the appendix shows the

resulting performance of the program
using the data collected in a confusion
matrix. From the figure we can see that
our implementation tends to
under-detect the correct value of the die
(number of black circular pits in our
experiments). We also have have many
false positives in which the program
detected a higher value then there

actually was, usually due to the program
identifying other circular objects in the
image. However, more than half of the
130 data images had a correct value
detection, which are the values lying on
the blue diagonal of the confusion
matrix.

Based on Fig. 2, we have
following derived statistics in the table
below:

Accuracy TOTAL
TP+TN 0.68 68%

Error Rate TOTAL
FP + FN 0.338 33.8%

Sensitivity P
TP 0.75 75%

Precision TP
TP+FP 0.82 82%

Here we can see a 68% accuracy

of the program, correctly identifying the
value of the die roll slightly greater than
⅔ of the time. The accuracy suffers from
true negative cases being difficult to
define. This is something that can be
improved upon in future revisions.

The error rate of 33.8% indicates
that typically our program misidentifies
the value of the die about a ⅓ of the
time.

The sensitivity indicates the
number of correct positive predictions
divided by the total number of positives
(excluding false positives) and the best
sensitivity is a value of 1.0. We have a
value of 0.75 indicating we have a good
level of sensitivity.

Precision is similar to sensitivity
but it is divided by the total number of

positives (both true and false positives).
Again value of 1.0 is ideal and our
program has a level of precision at 0.82,
indicating a high level of precision.

V. Conclusion

1. Connected Components coupled

with an eccentricity thresholding
provides scale invariance with
minimal loss in accuracy.

2. Otsu algorithm is useful for
segmenting the foreground and
background even when the
ground has some intensity similar
to the foreground.

3. These two methods combined
provide a flexible and fairly
accurate approach to the
problem.

4. Future work for this project would
be computer voice reading of the
number rolled. This method could
be expanded to help the blind
have more involvement in board
games. This can include future
work in reading a players current
board placement, keeping track
of their score, and reading the
board for players to strategize.

VI. References

Glen De Baker, Dice Recognition Program,
https://www.simplicity.be/article/recognizing-dice
s/

https://www.simplicity.be/article/recognizing-dices/
https://www.simplicity.be/article/recognizing-dices/

Appendix

Fig. 1 - Example Output

Fig. 2a - Original Confusion Matrix

Fig. 2b - Simplified Confusion Matrix

SOURCE CODE

clear all;
close all;
clc;

for a = 1:32
 %Used to loop through all files in the specified directory
 filename = ['C:\Users\josep\Desktop\CV_DATA\z_mono\' num2str(a) '.JPG'];
 img = imread(filename);
 TEMP = img;
 img = rgb2gray(img); %Grayscaled version of image

 %============== Finding the circles in the Dice ===========================
 threshold = graythresh(img); %Finds optimal threshold for binarization
 BW = imcomplement(imbinarize(img, threshold)); %Thresholds images and inverts it
 BW = bwareaopen(BW, 600); %Removes small objects from image
 %Connected components
 CC = bwconncomp(BW);
 stats = regionprops('table', CC, 'Centroid', 'Eccentricity', 'MajorAxisLength',‘MinorAxisLength');
 %Finds the circles of interests
 c = stats.Centroid;
 cnt = 0;
 centers = zeros(length(stats.Centroid), 2);
 diameters = zeros(length(stats.MajorAxisLength), 1);
 for i = 1: length(stats.Eccentricity)
 if (stats.Eccentricity(i,1) <= 0.28)
 centers(i, 1) = c(i, 1);
 centers(i, 2) = c(i, 2);
 diameters(i, 1) = mean([stats.MajorAxisLength(i,1) stats.MinorAxisLength(i,1)],2);
 cnt = cnt + 1;
 end
 end
 radii = diameters/2;
 %Overlays some information on image
 cnt = num2str(cnt);
 I_ovrlay = insertText(TEMP,[0,0],cnt,'FontSize',200,'BoxColor','red','BoxOpacity',1.0,
'TextColor', 'white');
 figure, imshow(I_ovrlay), title('GAMEBOARD');
 hold on
 viscircles(centers,radii);
 hold off
end

